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ABSTRACT

The possibility of using topography in a state estimation context as a control parameter is explored in a linear
barotropic shallow water model. Along with its adjoint, the model is used to systematically assess the influence
of the depth field on the modeled circulation in a steady state. Sensitivity of the flow field to the topography is
greater in a partially blocked zonal channel than in a subtropical gyre. Hypothetical surface elevations are used
to represent the types of data actually available. In neither case can all the details of the topography be recovered,
showing that the relationship between topography and elevation does not have a unique inverse, and that many
details of the topography are irrelevant to the particular physics under consideration.

1. Introduction

Numerical ocean models produce results dependent
upon many parameters and parameterizations, including
diffusion coefficients, wind forcing, lateral boundary
conditions, initial conditions, and many others. Much
activity is directed at understanding the sensitivity of
the results to a subset of these parameters by compar-
isons to observations. An organized form of testing the
sensitivity goes by the name of data assimilation or state
estimation. When done rigorously (e.g., Stammer et al.
2002; Wunsch 1996), certain fields and parameters are
identified as ‘‘control parameters.’’ The control param-
eters are independent variables that are systematically
modified within stipulated limits to bring the model
within an estimated error of the observations.

The introduction of a field as a control variable im-
plies the belief that the model result (trajectory through
its phase space) is indeed sensitive to that field in some
way that is important to reproducing the observations.
‘‘Controllability’’ is the mathematical concept under-
lying the belief that a variable is likely to be important
(see, e.g., Wunsch 1996, p. 383). For a general circu-
lation model (GCM), no full study of controllability or
the related concept of ‘‘observability’’ has ever been
carried out, as it involves potentially very difficult ques-
tions of model differentiability and the effective rank
of very large matrices. Instead, plausible assumptions
have been made about the dominant control variables,
and these have become the focus of most state esti-
mation efforts. Thus initial conditions and surface
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boundary conditions have been the primary control
fields for GCMs (e.g., Stammer et al. 2002).

In this paper, we begin the exploration of the impor-
tance, and practicality, of using bottom topography as
controls in models of the ocean circulation. The results
are envisioned as only the first step toward exploration
of the problem in more complex models, and also toward
employing, for example, lateral boundary conditions
(free-slip, no-slip, hyper-slip, etc.) as fields to be de-
termined rather than assumed a priori.

Bottom topography plays a major role in determining
the flow field in the ocean. It is, however, inaccurately
known in many regions, and even where accurately
known, the best way to represent it in ocean models is
obscure. For large regions of the Southern Ocean or the
Arctic Sea, one relies on charts of bottom topography
that were derived from very few in situ measurements.
Different map products sometimes describe very dif-
ferent bottom topographies. For example, the Founda-
tion Seamounts in the South Pacific were unknown prior
to space-borne altimetry (Smith and Sandwell 1997) and
are consequently not represented in the frequently used
dataset ETOPO5 (NOAA 1988). The bathymetry of
Smith and Sandwell (1997) is a major step forward in
constructing a global topography database for the ocean,
but the assessment of the absolute accuracy of topog-
raphy still remains difficult (W. H. F. Smith 2001, per-
sonal communication).

Numerical GCMs have limited resolution and the rep-
resentation of ocean basin geometry can be crude. Even
an accurate discretization of a perfectly known bathym-
etry may not lead to the best possible computed flow
field. As a common assumption, one concentrates on
the large-scale components of the flow, which presum-
ably ‘‘feel’’ only the corresponding large-scale com-
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ponents of the bottom topography, a representation of
which can be obtained by smoothing the real geometry
(Il’ in et al. 1974). As with subgrid-scale mixing pro-
cesses, the influence of small-scale features has to be
parameterized. But little or nothing appears to be known
about how to do it apart from the use of some forms of
simplified ‘‘wave drag’’ (e.g., McFarlane 1987). Wheth-
er the best fit of a coarse resolution model to real ba-
thymetry is a straightforward average or another ap-
proximation to the real topography is one of the issues
that must be addressed.

Similar ideas about the influence of bottom topog-
raphy have given rise to studies of its use as control
parameters in shallow water models of shelf seas (Das
and Lardner 1991, 1992; Heemink et al. 2002; Lardner
et al. 1993; ten Brummelhuis et al. 1993) using a variety
of optimization methods in various approximations. The
focus has tended to be on tidal modeling, whose gravity
wave dynamics are quite distinct from the nearly geo-
strophic limit of most open ocean general circulation
models.

The use of control methods to systematically adjust
dynamical models is now a familiar, if not yet com-
pletely common, endeavor. That such methods ‘‘work,’’
in the sense that solutions can be found if the data and
model are consistent, is not in doubt. The questions
being addressed here are 1) whether the dynamics pe-
culiar to the large-scale ocean circulation and the par-
ticular way in which topography enters the equations of
motion causes any unexpected difficulties, and 2) to the
extent that sensitivities and uncertainties about the to-
pography remain, to try and understand the physical
causes. All so-called inverse methods ultimately solve
an optimization problem; thus in question 1, the concern
is most often about the ability to numerically reduce a
potentially very complex objective or cost function.

Estimating topography from data involves a nonlinear
optimization problem because the dynamic variables de-
pend nonlinearly on depth. In this light, it is important
to understand whether, given the available data, there
is a unique optimal representation of topography, or
whether there are many different representations equiv-
alently consistent with the observations. We address this
question systematically in a model of the ocean circu-
lation by invoking inverse (state estimation) methods.

Ultimately, we are interested in the topographic rep-
resentation in a full model. As a starting point, the study
is here confined to a linear shallow water model in
steady state. In addition to the information contained in
the model dynamics and in the hypothetical data, the
realistic assumption is made that useful a priori esti-
mates of the topography are available as well.

The steady-state flow, in two distinct dynamical re-
gimes, is explored: (a) a zonal channel, whose dimen-
sions are based on previous models of the Antarctic
Circumpolar Current (ACC); and (b) in a midlatitude
gyre flow. Different sensitivities to bottom topography
can be anticipated in the two configurations.

The only ‘‘observations’’ used here are sea surface
height (altimeter) data. These pseudo data are the natural
choice because they are the only available observable
physical property reflecting the three-dimensional,
large-scale fluid flow (Wunsch and Stammer 1998). The
uncertainties associated with existing absolute sea sur-
face height data are still large because of geoid errors,
but new gravity missions will reduce them by an order
of magnitude (Ganachaud et al. 1997; LeGrand 2001;
Schröter et al. 2002).

The paper is organized as follows. Section 2 describes
the shallow water model and both analytic and control
theory approaches toward exploring the sensitivity of
the flow to bottom topography. In section 3, it is dem-
onstrated how the sensitivity of an objective function
to infinitesimal perturbations can be assessed. In twin
experiments in sections 4, 5, and 6, the shallow water
flow is constrained by sea surface height data in various
configurations. A discussion and conclusions are given
in section 7.

2. Linear shallow water model

a. Model domain and control run

The equations used are for linearized shallow water
flow on the b plane without horizontal friction and with
a linear parameterization of bottom stress. Their prim-
itive form is represented in finite differences on a C
grid. Starting from initial conditions for velocity and
sea surface height, the equations are stepped forward in
time by a scheme that treats the bottom stress term
implicitly and the Coriolis term explicitly.

As a first step toward understanding the role of bottom
topography, consider the flow in a periodic zonal chan-
nel with solid boundaries to the north and the south on
a b plane with idealized topography. The scale is based
on that of the ACC, with length X 5 4000 km, width
Y 5 1600 km, and maximum depth H0 5 4 km. The
horizontal grid cell length is Dx 5 Dy 5 200 km re-
sulting in 20 3 8 5 160 grid cells. Here f 0 ø 21.2 3
1024 s21 and b ø 1.3 3 10211 s21 m21 are chosen such
that the channel is centered at approximately 558S. The
flow is forced with steady eastward winds exerting a
stress, t x 5 t0 sinpy/Y, with t0 5 1024 m2 s22. The
bottom friction parameter r 5 4 3 1023 m s21 is chosen
so that the spindown time is H0/r ø 11.6 days.

A central meridional Gaussian sill extends across the
channel with a crest 400 m above the maximum depth
of 4000 m. Its half-width of 200 km corresponds to an
average slope of 1 m in 1000 m. The depth h is shown
in Fig. 1.

The model is spun up to a steady state with a time
step of 100 s for 60 000 time steps (ø70 days). Sea
surface height and velocity of this steady state, together
with the f /h contours are shown in Fig. 2. For illustrative
purposes, the steady-state equations of motion can be
written in terms of a transport streamfunction c,
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FIG. 1. A section along the zonal channel with the Gaussian sill.

FIG. 2. (top) The f /h contours of the channel (contour interval is
0.1 3 1028 s21 m21). (Quasi-) steady-state flow field after spinup of
ø70 days: (middle) sea surface height (contour interval is 2 cm) and
(bottom) velocity (contours display the current speed, arrows its di-
rection; contour interval is 0.2 cm s21).

f t
J c, 5 k · curl1 2 1 2h h

] 1 ]c ] 1 ]c
2 r 1 , (1)

2 25 1 2 1 26]x h ]x ]y h ]y

where the term on the left-hand side is the Jacobian and
t 5 (t x, 0). In the absence of bottom stress and forcing,
J(c, f /h) 5 0, implying that the streamlines coincide
with the geostrophic contours f /h. Dissipation and sur-
face stress force the flow across geostrophic contours
(Pedlosky 1987). To within the quasigeostrophic ap-
proximation, the elevation h and the scaled stream-
function ( f /g)c are the same.

Here, the sill deflects the f /h contours equatorward
where they are blocked at the northern boundary of the
channel. The number of blocked contours increases with
the height of the sill, and hence controls the transport
through the channel.

Note that although the f /h contours are symmetric
about the center of the channel, the stress terms in the
momentum equations break the symmetry, so that the
maximum northward deflection of the flow is shifted
downstream from the corresponding position of the geo-
strophic contours. Both the strongest and the weakest
flow near the sill occur slightly downstream of the sill
crest.

b. Parameter estimation: Analytical approach

Assuming only zonal wind stress, Eq. (1) can be re-
cast as a partial differential equation for the inverse
depth a 5 h21:

]
2 x(r¹ c)a 1 2r=c · =a 1 fJ(c, lna) 2 t lna

]y
x]t ]c

5 2 b . (2)
]y ]x

The equation is nonlinear in a owing to the presence
of the logarithm. If the streamfunction c, or surface
elevation, and the boundary conditions for a are known,
Eq. (2) has a solution for given c, which could be found
using numerical methods.

Some additional insight into the problem can be ob-
tained by linearization. To do so, denote dimensional

variables temporarily with asterisks, and define nondi-
mensional ones,

x* 5 Xx, y* 5 Xy, d 5 A /H0

a
f * 5 f f 5 f 1 1 b y 2 , with0 0 1 2[ ]2

X
b 5 b*, h* 5 H (1 1 dj),0f0

r
t* 5 t t , e 5 , (3)0 f H0 0

where j is an O(1) nondimensional topography, A a scale
for the relief height, so that d K O(1), and a 5 Y/X is
the domain aspect ratio. With the velocity scale

r UH Y0 0U 5 , c* 5 c, (4)
f H a0 0

and, for small d,
21 2(1 1 dj) 5 1 2 dj 1 O (d ), (5)

c 5 c 1 dc9. (6)

Neglecting terms of O (d2), Eq. (1) becomes
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]c ]c ]j ]c ]c ]j
y x2e 2 f 1 t 1 2e 1 f 2 t1 2 1 2]x ]y ]x ]y ]x ]y

]c9
2 22 (e¹ c )j 5 2 e¹ c9 1 b1 2]x

(7)

after choosing an unperturbed state of flow over ac
flat bottom, for which

]c
2e¹ c 1 b 2 k · curlt 5 0. (8)

]x

For a wind field t 5 (sinpy/a, 0), } [1 2 cos(py/a)],c
and Eq. (7) simplifies to

p ]j f ]j p p
sin y 2 1 cos y j1 2 1 2a ]y e ]x a a

]c9
25 e¹ c9 1 b . (9)1 2]x

Equations (7) and (9) are linear first-order partial dif-
ferential equations in the perturbation j to the flat bot-
tom case, which can be solved by the method of char-
acteristics or numerically, given a set of starting values
of j.

Rather than pursuing this analytical approach, we
seek instead a more flexible method capable of dealing
with the eventually much more complex wind fields,
finite-amplitude topography, and ultimately baroclinic
physics of a GCM, as well as the errors in measurements
of c. Equations (2), (7), or (9) do, however, show that
the control problem is equivalent to the determination
of the depth field from a set of observables c. Because
the streamfunction c cannot be observed directly in a
realistic configuration, other types of data must be used,
for example, observations of sea surface height, which
are the same as ( f /g)c within the geostrophic approx-
imation. It is apparent that all of the issues of continuity,
differentiability, etc., that arise for the solutions of par-
tial differential equations will have their counterparts in
the control problem.

c. Parameter estimation: Objective function and
adjoint model

As discussed, for example, in Wunsch (1996), there
is a close connection between so-called Gauss–Markov
or minimum variance estimation, and the solution of an
equivalent least squares problem. In this paper, we will
use the language and formalism of least squares, rec-
ognizing, however, that the interpretation best placed on
the result is that of a solution to a statistical estimation
problem.

Let yi 5 Hi(c) 1 ni represent the pseudo observa-
tions, having noise element ni, supposed to have zero
mean; let y 5 H (c) 1 n be the vector of observations,
and n the vector of noise. Here H is a general operator
that maps the state vector c to the observations. The

least squares approach demands the depth field for
which a quadratic objective function of the type (e.g.,
Wunsch 1996)

1
T 21J 5 [y 2 H (c)] C [y 2 H (c)] 1 other terms (10)n2

has an acceptable global minimum. Matrix Cn describes
the prior error covariance estimate. Because the model
state, c, is a nonlinear function of the field h (all as-
terisks are removed, and all variables are dimensional
from now on), the least squares problem is also non-
linear. Starting from an initial estimate, a quasi-Newton
algorithm (Gilbert and Lemaréchal 1989) at each step
evaluates the gradient of the objective function (10) with
respect to depth and calculates a new state based on the
gradient information until a convergence criterion is
met. The gradient field is found through the so-called
adjoint model (e.g., Wunsch 1996), which is generated
semi-automatically by the Transformation of Algo-
rithms in FORTRAN (TAF) compiler (Giering and Ka-
minski 1998; Marotzke et al. 1999) applied to the FOR-
TRAN source code of the forward model.

Assuming that one has found the global minimum,
the Hessian matrix of second derivatives of the objective
function J at the minimum can be computed with code
that has also been generated by TAF. Let M (h) 5
H [c(h)] be the nonlinear model operator that maps the
depth h to the data, then the linearized Hessian H (not
to be confused with the observation operator H ) is

T
]M ]M

21H 5 C , (11)n1 2 1 2]h ]h

where the Jacobian or adjoint model operator
5 (]Mi/]hj)T is evaluated at the minimum.T(]M /]h)ij

In the neighborhood of the solution, the inverse Hes-
sian is proportional to the covariance matrix of the so-
lution. Hence the eigenvalues of the Hessian can be used
to determine which components of the control parameter
are well or poorly determined by the data (Thacker
1989), with small eigenvalues corresponding to poorly
determined components and vice versa. Zero eigenval-
ues correspond to completely indeterminate elements
that lie in the problem null space. (Note that the concept
of a null space is only directly applicable in the line-
arized problem. At finite amplitude, the indeterminate
components are constructed here as the difference be-
tween the known correct solution, and the one found by
nonlinear optimization.)

3. Sensitivity of zonal volume transport to depth

The adjoint model permits calculation of the gradient
of any parameter, or combination of parameters, with
respect to the controls. Thus the sensitivity of the so-
lution element to perturbations in control parameters is
readily found. Consider, briefly, an alternative scalar
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FIG. 3. Gradient of zonal transport with respect to depth (Sv m21).
Areas of negative values are shaded. Contour interval is 0.02 Sv m21.

FIG. 4. Eigenvalues of the Hessian of the objective function J1 [Eq.
(12)] normalized by the maximum eigenvalue. The smallest eigen-
value, which is numerically zero [O(10215)], is not shown. The cor-
responding null space vector consists mostly of grid-scale noise.

observable that can be used to characterize the flow.
The zonal volume transport,

Y

T 5 h(x , y)u(x , y) dy,V E 0 0

0

depends explicitly and implicitly on the topography in
the channel, but is independent of the zonal position x0.
The gradient of the zonal transport with respect to depth
]TV/]h is the spatial distribution of this sensitivity (Fig.
3). Sensitivity is largest over the northern end of the
sill where most of the flow traverses the obstacle. Here,
decreasing the height of the sill at one grid point by 5
m would increase the flow by 1 Sv (5106 m3 s21). At
the southern end, changes in sill height hardly affect the
flow. The gradient of TV with respect to depth is slightly
negative in the deep-sea regions away from the sill.
Making these regions shallower shifts the f /h contours
north, thus moving some of the blocked contours across
the northern boundary and out of the model domain.
They are replaced by unblocked contours near the south-
ern boundary. More unblocked contours lead to higher
transports.

Thus, the gradient systematically assesses the sensi-
tivity of the flow to topography in a quantitative way.
Furthermore, this sensitivity can be conveniently con-
nected to the dynamics of the flow. In the following
sections we explore the ability to estimate depth from
the combined sea surface height data and the model.

4. Error-free-data experiments

In this section the method of ‘‘identical twins’’ is used
to explore how topography as an independent variable
is constrained by sea surface height data. After the mod-
el is spun up to a near-steady state, it is integrated for
another 40 000 time steps (ø46 days) to produce pseudo
data. In a subsequent run with identical boundary and
initial conditions, the model necessarily fits these values
perfectly, and the objective function has its minimum
value (zero). In bypassing the minimization, we avoid
convergence problems at this point. The system is at a
global minimum, and we can safely employ the line-
arization of the Hessian matrix for error calculations.

With a perfect result, the only consistent error esti-

mate would have zero variance. We can nonetheless
explore the impact of data errors on the accuracy of
depth estimates, in the limit of small perturbations about
the perfect solution. The case where errors are added
to the pseudo data will be taken up later (section 5).

We use two different objective functions. In the first,
we assume that we do not know anything about the
depth, and in the second we use an a priori depth es-
timate that is accurate to within 200 m. We anticipate
that with the first objective function not all depth values
can be determined from data (see also Das and Lardner
1992). As an intuitive explanation, consider that in re-
gions of no flow the height of the topography has no
effect. A topographic estimate from data in such a qui-
escent region would necessarily be nonunique.

With the second objective function, a bias toward the
a priori depth estimate is introduced into the system.

a. Sea surface height data only

The first objective function is

1
T 21J 5 [y 2 M(h)] C [y 2 M(h)], (12)h1 2

where yi are the sea surface height data, Mi(h) their
model counterparts, and Ch 5 I is a diagonal co-2sh

variance matrix with the constant prior error estimate
sh for the data. Here sh is chosen to be 10 cm. Only
relative weights affect the solution of the optimization
problem, so that the size of sh has, for the moment,
only the role of a uniform scaling factor. Later, however,
additional, differently weighted terms will be intro-
duced.

An eigenvalue spectrum of the numerical approxi-
mation of the Hessian matrix is shown in Fig. 4. The
displayed range of the spectrum spans eight orders of
magnitude; the smallest eigenvalue, which is numeri-
cally zero [O(10215)], is not shown. The null space vec-
tor corresponding to the zero eigenvalue shows a nearly
pure grid-scale (2Dx) structure.

Eigenvectors corresponding to the very small, but
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FIG. 5. Estimated error reduction for depth (in %, relative to the
prior error estimate sh 5 200 m); error-free data; deviations from
the (true) initial guess are penalized.

nonzero eigenvalues, are also dominated by grid-scale
noise. But they also have a superimposed large-scale
structure that we believe arises from technical aspects
of the numerical scheme, and so we do not attach any
physical significance to them. On a C grid, the kine-
matically relevant depth at the velocity points has to be
found by interpolation between the values at the grid
cell centers where the control parameters are located.
This interpolation is clearly responsible for the grid-
scale noise. One could avoid this issue by choosing the
depth at the velocity points as control parameters. But
this doubles the number of the control parameters. Also,
as will be clear later on, introducing prior information
for topography eliminates the grid-scale-noise problem.

In an attempt to add information to the system that
otherwise lies in the null space, one can augment the
data vector y in Eq. (12) with direct observations of the
velocity. But experiments (not shown) reveal that the
structure of the null space does not change when one
includes in the objective function even a full row of
velocity measurements that spans the channel—presum-
ably because the grid noise in the model has a very local
structure.

Because of the zero eigenvalue, the condition number,
which is the ratio of the largest and the smallest eigen-
value, is infinite and the Hessian matrix is singular, even
if one were willing to regard the other very small ei-
genvalues as being mathematically nonzero. In the pres-
ence of any noise at all, some of the small eigenvalues
are effectively zero, and one therefore infers immedi-
ately that there will, at least in a formal sense, be an
infinite number of acceptable solutions to the problem
of determining h. One needs ultimately, to understand
the family of acceptable solutions. In section 5 the shape
of the poorly determined components of bottom topog-
raphy will be discussed.

b. Sea surface height data and prior depth estimate

The objective function (12) is augmented by a term
that penalizes deviations from a prior depth estimate,
h0 as,

1
T 21J 5 [y 2 M(h)] C [y 2 M(h)]h2 2

1
T 0211 (h 2 h) C (h 2 h), (13)h02

where Ch 5 I is a, for now, diagonal covariance matrix2s h

with the constant prior error estimate sh for depth. With
the addition of this term, which renders the problem one
of ‘‘tapered least squares,’’ the null space, either formal
or effective, is suppressed. For simplicity, the prior error
estimate for sea surface height is again constant in space
and time with standard deviation sh 5 10 cm. This value
is in rough accord with the average combined error of
satellite altimetry and an underlying geoid model
(Wunsch and Stammer 1998). A large depth error, sh

5 200 m, is chosen to prevent the prior estimate of the
depth from dominating the new estimate. Also, the ver-
tical resolution of a GCM near the bottom can be very
poor, so that sh can be interpreted also as the accuracy
by which depth is represented on a numerical grid.

The condition number of the Hessian of J2 is ø24,
and the problem is well conditioned. None of the ei-
genvectors contain any grid-scale noise. The posterior
relative error reduction estimate (51 2 /sh)21Ïdiag(H )
in percent (%) is shown in Fig. 5. The impact of sea
surface height data on the topography estimate is great-
est where the current speeds are highest. Above the
flanks of the sill, the topography error estimate is re-
duced by up to 20% compared to the initial error esti-
mate of 200 m, while above the southern part of the sill
and along the northern and southern boundaries away
from the sill there is hardly any error reduction at all.

5. Recovering the ‘‘true depth’’

The experiments of section 4 suggest that measure-
ments of the dynamical properties of the flow are not
sufficient to remove the problem null space. Hence, one
cannot expect to estimate a unique bottom topography
with a shallow water model, unless there is additional
information available about those components of the
topography lying in the effective null space of the prob-
lem. But we are primarily interested in an optimal rep-
resentation of topography in an ocean model. In this
context the null space components of the topography
will not affect the flow and need not be determined from
data.

In the following experiments, the optimization is
started from an incorrect prior depth estimate h0 for
which the first estimate of the sill height has been in-
correctly set to 360 m, that is, with a 10% initial error.
Deviations from this prior estimate are penalized as de-
scribed by objective function J2 [Eq. (13)]. Doing so
introduces a bias toward the incorrect prior depth es-
timate h0. By choosing small weights for the penalty
term, that is, assuming a large error for the prior depth
estimate, one can alleviate the effects of the bias, but
cannot remove them entirely. (The prior error estimates
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FIG. 6. (top) Difference between true depth and estimated depth
(in m) and (bottom) estimated error reduction (in %, relative to the
initial error estimate of 200 m); perfect sea surface height data; de-
viations from the (wrong) initial estimate are penalized.

FIG. 7. (top) Difference between true depth and estimated depth
(in m) and (bottom) estimated error reduction (in %, relative to the
initial error estimate of 200 m); noisy sea surface height data; de-
viations from the (wrong) initial guess are penalized.

chosen here are the same as in section 4b, sh 5 10 cm,
and sh 5 200 m.)

a. Perfect sea surface height data and a prior depth
estimate

Figure 6 shows the difference between the true depth
and the estimated depth after minimizing the objective
function J2 with sea surface height data that has been
generated with the correct topography. The difference
between the estimated depth and the true depth is small
over the northern part of the sill where the current ve-
locities are high (cf. Figs. 2 and 6). Over the southern
end of the sill, the sea surface height data have little
effect, and the differences between the optimal estimate
and the true depth are as large as 40 m. The difference
between the estimate and the true depth is always small-
er than the posterior error estimate, and so the solution
is statistically consistent.

b. Noisy sea surface height data and a prior depth
estimate

With objective function J2 [Eq. (13)] the problem is
formally well determined, but the information provided
by the sea surface height data is not sufficient to re-
construct the true depth completely: in the previous sec-
tion, the estimated depth differs from the true one, in
some places by as much as the initial difference.

The problem is now extended to explore the sensi-
tivity of the optimal solution to random Gaussian noise
in the data having a standard deviation of 10 cm. With
these noisy data, the experiment of the previous section
with objective function J2 is repeated.

When the forward model is run with an incorrect
topographic estimate as in section 5a, it produces an
rms deviation from the correct sea surface height of only
0.5 cm. After optimization, using the noisy sea surface
height data, this rms difference is hardly changed, and
the difference between the true depth and estimated
depth remains very large (Fig. 7) with an rms difference
of 45 m and a maximum difference of 124 m. Thus
major differences in bottom topography generate only
very slight differences in surface elevation. After op-
timization, all differences in surface elevation and bot-
tom topography are smaller than the formal error esti-
mates and the solution is statistically consistent. The
error estimate still shows the spatial patterns of Figs. 5
and 6 with smallest errors (largest error reductions)
where the velocities are strong, but as a consequence
of the random nature of the noise in the data, the depth
error reduction can locally be much greater than with
perfect data (Fig. 6).

In spite of the noisy topography estimate, the estimate
of the sea surface height by the inverse model is im-
proved over the noisy data: the rms difference between
the temporal means of the perfect and the noisy data is
1.2 cm; for the perfect data and the model estimate, this
rms difference is only 0.5 cm. Therefore, adjusting the
topography improves the model–data fit. But the new
sea surface height mean (Fig. 8) implies the difference
to the true topography shown in Fig. 7. Reducing the
noise level in the data leads to a less distorted sea surface
height estimate, which in turn reduces the noise in the
topography estimate (not shown).
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FIG. 8. Estimate of the mean sea surface height after assimilating
noisy sea surface height data. Contour interval is 2 cm. Compare to
Fig. 2.

FIG. 10. Initial gradient of objective function (12) with respect to
depth for the gyre experiment. Contour interval is 0.01 m21 (the
objective function itself has no units).

FIG. 9. (left) Sea surface height (in cm) and (right) velocity field (contours in cm s21, arrows indicate direction of
flow) of the gyre with the full ridge of 2000 m along x 5 2000 km.

6. Gyre experiments with noisy sea surface height
data

To demonstrate the behavior of the system in a regime
in which the the topography has a smaller impact on
the flow than in a zonal channel, attention is now turned
to a closed basin with a gyre flow. Dimensions are 4000
km in both the zonal and meridional direction: the hor-
izontal grid cell length is 200 km, the maximum depth
H0 5 4 km, f 0 ø 7.3 3 1025 s21, and b ø 2.0 3 10211

s21 m21. The flow is forced by a stationary zonal wind
stress t x 5 t0 cospy/Y, with t0 5 1024 m2 s22. A linear
bottom friction parameter r 5 0.04 m s21 leads to a
western boundary current that the coarse grid can re-
solve. An analytical problem analogous to that posed
above in Eq. (9) can be formulated. Because of the
choice of parameters, the rms amplitude of the sea sur-
face height itself is only of the order of 1 mm in contrast
to 6 cm in section 5.

Proceeding numerically again, however, the gyre flow
is by far less sensitive to changes in the bottom topog-
raphy than is the flow in the zonal channel. A meridional
midocean Gaussian ridge of 2000-m height and 200-km
half-width at the center of the basin modifies the flow
primarily away from the western boundary current. With

the ridge, the zonal steady-state flow along the northern
and the southern boundary is topographically steered
equatorward (Fig. 9), but it does not follow the geo-
strophic contours as closely as does the flow in the zonal
channel. As a consequence, decreasing the ridge height
to 1000 m above the seafloor leads only to a slight
change in the flow. The rms difference between the sea
surface height with the full ridge and with the smaller
ridge is 0.25 mm, that is, over one order of magnitude
smaller than in the experiments of section 5 although
the change in topography is considerably larger here.

Treating the true sea surface height as data, the initial
gradient of objective function (12) with respect to depth
for the model with the smaller ridge is plotted in Fig.
10. The prior rms error estimate for sea surface height
is 1 mm. The objective function is most sensitive to
depth over the northern part of the ridge where increas-
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FIG. 11. (left) True errors (difference between estimated and true depth, contour interval is 100 m) and (right)
estimated errors (square root of the diagonal of the inverse Hessian, contour interval is 25 m) of topography in meters,
for the case of error-free sea surface height data. The height of the ridge is initially 1000 m. Deviations from the (false)
initial estimate are penalized.

ing the ridge height would deflect the flow further equa-
torward and thus decrease the model–data misfit.

An eigenvalue decomposition of the Hessian of the
objective function, similar to that of section 4, reveals
that—apart from the grid-scale components—the eigen-
vectors corresponding to the smallest eigenvalues (the
least constrained shapes) have a peak near the point (x,
y) ø (1000 km, 2000 km) where there is little flow.

a. Error-free sea surface height data

The forward model is started with an initial estimate
for the ridge height of 1000 m (extending to 3000-m
water depth) when the ‘‘correct’’ value is a height of
2000 m. The model then must recover the true depth
from sea surface height ‘‘data’’ that have been generated
by the model with the ‘‘correct’’ ridge height of 2000
m. The deviations from the (false) initial estimate are
penalized as described by objective function J2 [Eq.
(13)]. The prior errors in this experiment are sh 5 1
mm and sh 5 1000 m.

The solution after 48 minimization steps is depicted
in Fig. 11. As before, the solution resolution is highest
where the current velocities are high. The true errors
(difference between estimated and true depth on the left-
hand side of Fig. 11) are greatly reduced over the north-
ern and southern end of the ridge whereas at the center
of the gyre, where the fluid is almost at rest, the ridge
is poorly recovered. Estimated errors, which are con-
sistently larger than the true errors, show their minimum
in the western boundary current. A local error minimum
is also observed in the north where the ridge causes the
strongest deflection of the flow. The overall error re-
duction is small compared to the uniform prior error of
1000 m. A larger estimated uncertainty remains and it
is concluded that sea surface height data in this config-
uration can only weakly constrain the topography.

b. Noisy sea surface height data

Gaussian noise with a standard deviation of 1 mm is
added to the sea surface height data and the experiment
of section 6a is repeated. Convergence is slow, so that
the norm of the gradient is only reduced by a factor of
0.04 after 300 minimization steps. The rms difference
between the estimated and the true depth is actually
increased from 298 m before the optimization to 439 m
afterward (not shown). The model cannot find a depth
estimate that is consistent with prior assumptions or the
true solution. Apparently the initial estimate of topog-
raphy corresponds to a point in the phase space that is
too far away from the global minimum, so that the non-
linear minimization with noisy data slowly converges
to a local minimum. Further experiments, in which the
initial depth estimate has been moved closer to the true
depth, confirm this conclusion: for an initial height es-
timate of the ridge of 1500 m, the optimization con-
verges quickly and the solution is consistent with the
true depth within estimated errors (Fig. 12).

To overcome the poor convergence of the optimiza-
tion problem with an initial ridge height of 1000 m, a
smoothness requirement, a simple way of demanding a
spatially correlated solution, is added to the objective
function. Correlation is achieved by adding nondiagonal
contributions to the depth weight matrix in the objective
function J2, here constructed from the matrix operator
L that represents the discretized Laplacian operator,

21 22 22 TC 5 s I 1 s L L.h h r (14)

With the new objective function J2, in which sr 5
2shDx22 is chosen such that both terms in Eq. (14) have
the same order of magnitude, faster convergence is
achieved: the norm of the gradient is reduced by a factor
of 105 after 59 minimization steps. Also the rms dif-
ference between the estimated and the true depth is de-
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FIG. 12. (left) True errors (difference between estimated and true depth, contour interval is 100 m) and (right)
estimated errors (square root of the diagonal of the inverse Hessian, contour interval is 25 m) of topography in meters,
for the case of noisy sea surface height data. The height of the ridge is initially 1500 m. Deviations from the (false)
initial guess are penalized. To obtain convergence in this solution, the initial guess has been moved closer to the true
depth than for the solutions plotted in Figs. 11 and 13.

FIG. 13. (left) True errors (difference between estimated and true depth, contour interval is 200 m) and (right) estimated
errors (square root of the diagonal of the inverse Hessian, contour interval is 50 m) of topography in meters, for the
case of noisy sea surface height data with penalized roughness. The height of the ridge is initially 1000 m. Deviations
from the (false) initial estimate are penalized as well.

creased to 275 m, but the spatial patterns of both the
true and estimated errors show less resemblance with
the flow field and the topographic features as in the
perfect-data case (Fig. 13). More than 90% of the true
errors are smaller than one standard deviation of the
estimated errors, and all true errors are smaller than two
estimated standard deviations.

7. Discussion and conclusions

In a steady barotropic situation, it is practical to treat
the bottom topography as a control variable to be de-
termined from the combination of a model and obser-
vations. This conclusion is consistent, despite the rad-
ically different physical setting, with shallow water
gravity wave studies (e.g., Das and Lardner 1992; ten

Brummelhuis et al. 1993). Here, we put this concept
into the context of modeling the general circulation of
the ocean.

Surface elevation alone does not, empirically, pro-
duce a full uniquely determinable estimate of the bottom
topography of the underlying model, especially when
the data are noisy and small eigenvalues become part
of the effective null space. As with all such problems,
the accuracy of the a priori information has a direct
influence on the final accuracy and precision of the re-
sults. The only simple generalization is that regions of
high flow velocity tend to produce better results, with
weak flow regions providing relatively little information
about the topography. A Southern Ocean–like channel
shows a greater sensitivity of the elevation to topo-
graphic perturbations, and this sensitivity translates into
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a greater ability to recover the topography. In midlati-
tude gyre problems, errors in the bottom topography are
unlikely to be the dominant source of model problems,
given all of the other uncertainties involved. To that
extent, the insensitivity there is good news.

The above conclusion seems also valid if the accuracy
of the, in our case, sea surface height data is dramatically
increased with the new space-borne gravity missions,
for example, the Gravity Recovery and Climate Exper-
iment mission (GRACE) (Tapley 1997). In our model
we can reduce the formal error to zero as in section 4,
but there still remains a null space, which is associated
with regions of weak flow.

When attention is turned to more realistic problems,
particularly those involving baroclinicity, a number of
major changes can be anticipated. The sensitivity of the
surface elevation to the depth structure in general will
decrease in a model that allows for baroclinic compen-
sation (e.g., Holland 1973; Marshall and Stephens
2001). On the other hand, topography can have a major
impact on water mass properties, which are a central
oceanographic observable and for which there exists a
major database. Undoubtedly there will be technical de-
tails of deducing the best-fitting topography in such
models, but the principle of doing so does not seem to
be in doubt. A likely major issue is the expected cou-
pling between topographic representation and mixing
parameterizations.

Also unexplored at this time is the information con-
tent, in the barotropic model, of the time-dependent mo-
tions that are readily observed with altimeters. This step
is left to the future as well.

Technical points raised by the use of topography as
a control variable have been glossed over here, on the
basis that numerically, no particular difficulties were
encountered. On a more theoretical level, particularly if
one returns to the analytical form of Eq. (7), the exis-
tence of the adjoint might be called into question. In
the continuous formulation, the existence of the adjoint
model depends upon the differentiability of the forward
model with respect to the topographic field. In practice,
as here, with a little care, discrete models do not produce
numerical derivatives that are infinite. Experience with
the adjoint tool used does show that it is possible to
write FORTRAN codes that cannot be compiled, but
these problems usually result from coding issues, rather
than from mathematical ones.

Here, as a particular example, we explicitly avoided
the use of code that fails to be numerically differentia-
ble. For a finite volume discretization of the equations
of motion as in the MITgcm (Marshall et al. 1997),
where the depth at the interface between two grid cells
(velocity points on a C grid) is evaluated as the mini-
mum of the two cell depths (tracer points), the FOR-
TRAN minimum function is not differentiable when the
grid cells have exactly the same depth. In this situa-
tion—which is common in ocean general circulation
models where the abyssal plains are characterized by

many grid cells with exactly the same depth—the dis-
continuities of the gradients of the objective function
may cause numerical difficulties in the minimization.
One remedy may be the shaved cell formulation, where
the step topography of the partial cells with flat bottoms
is replaced by piecewise linear topography (Adcroft et
al. 1997).

The use of bottom topography as a control variable
is only the first of a number of unorthodox controls that
need to be explored. Prominent among these are the
inference of lateral and bottom boundary conditions
from observations. Open boundaries are already being
employed in state estimation, where inflows, outflows,
and scalar properties being carried become parts of the
control vector (e.g., Zhang and Marotzke 1998). But
even with models using conventional Laplacian friction,
one has to make a choice between free-slip and no-slip
(Adcroft and Marshall 1998). In models with, for ex-
ample, biharmonic terms in the momentum equation,
the most appropriate higher-order boundary conditions
are little more than guesses. The distinction between
open and closed boundaries is thus seen to be somewhat
artificial. Eventually, bottom topography as well as all
boundary conditions, are expected to be included gen-
erally as a control variable in general circulation models
of arbitrary complexity. Much remains to be done.
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