Designing Suitable Metal Amidinate Sources for TiN and Ba/Sr-containing Thin Films

Jean-Sébastien M. Lehn, Qing Min Wang
Daewon Hong and Deo V. Shenai
Advanced Thin-Film Technologies,
Rohm and Haas Electronic Materials LLC,
North Andover, MA 01845.

Hongtao Wang and Roy G. Gordon
Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138.
Selection of Suitable Platforms for ALD

Metal Amidinates

- **Bidentate “chelating” effects** → Improved thermal stability
- **$R^{1,2,3}$ tuning in amidinate** → Volatility and reactivity control
- **No direct M-C bonds** → Less carbon incorporation in films
- **Amidinates** of La, Cu, Co, Ru, Ni, Er, Gd, Zr, Hf, Y are used efficiently in ALD.
New Amidinate Sources for Ba, Sr and Ti

- TiN is an excellent barrier and also a good electrode material.
- The current titanium sources (TDMATi and TDEATi)
 - lack thermal stability and decompose at elevated temperatures
 - may lead to inferior quality TiN films.
- New Ti (III) Amidinate is designed to overcome these limitations
- STO, BTO and BST find applications in
 - NVFeRAM, microwave, DRAM, MEMs.
- Ba and Sr amidinates are also developed as alternative sources.
New Ti, Sr, and Ba Sources from Rohm and Haas

Ti-FAMD

Sr-AMD

Ba-AMD
Ti-FAMD offers:

- highly volatile liquid Ti (III) precursor
- Clean evaporation with negligible residues
- VP = 0.1 Torr at 80 °C, suitable for ALD
TiN Thin Film Processing from Ti (III) FAMD

Source Temp: 85 °C

ALD TiN: 280 < T < 310 °C

CVD TiN: 310 < T < 335 °C

CVD TiCN: T > 335 °C

ALD process window is 280 < T < 310 °C
TEM of ALD TiN

Real space image

Diffraction pattern

Plane view

Cross-section

Amorphous with some tiny nanocrystalline regions
Smooth films (with RMS = 0.46nm) were obtained.
TiN ALD: Step Coverage by TEM

Conformal in 80:1 aspect ratio hole, ALD at 335 °C with ammonia
No C in the films at < 335 °C by XPS

Ti-FAMD
Vapor Pressure of Sr AMD

$$\log P(\text{Torr}) = 10.41 - \frac{3887}{T (K)}$$

Temperature Centigrade

Vapor Pressure (Torr)
Using Me$_3$N as a carrier gas increases the TG vapor transport rate of Sr(thd)$_2$ and Sr(amd)$_2$

- >3 x faster for Sr(thd)$_2$
- >6 x faster for Sr(amd)$_2$
- Sr(amd)$_2$/Me$_3$N >20 x faster than Sr(thd)$_2$/N$_2$
High Thermal Stability of Sr/Ba-AMD

Stable up to 250° C

Stable up to 220° C

Thermal stability studies by Accelerated Rate Calorimetry analysis (ARC)
Properties of the New Ti, Sr, and Ba Precursors

<table>
<thead>
<tr>
<th>Name</th>
<th>M. W. (g/mol)</th>
<th>Appearance</th>
<th>M. P. (ºC)</th>
<th>Density (g/mL)</th>
<th>Vapor Pressure</th>
<th>Thermal Stability</th>
<th>¹H NMR</th>
<th>Solubility</th>
<th>Shelf life</th>
<th>TGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-FAMD</td>
<td>283.37</td>
<td>Deep Brown liquid</td>
<td>N/A</td>
<td>0.90</td>
<td>Data collection in progress</td>
<td>Stable to 250 ºC by ARC</td>
<td>Organic impurity N.D.</td>
<td>Soluble in hydrocarbon solvents (> 0.1 M)</td>
<td>Stable over 3 months</td>
<td>Clean evaporation</td>
</tr>
<tr>
<td>Sr-AMD</td>
<td>852.38</td>
<td>White solid</td>
<td>> 200 ºC</td>
<td>0.50</td>
<td>log (P (\text{Torr}) = 7.872 - 3129/T(\text{K}))</td>
<td>Stable to 220 ºC by ARC</td>
<td>Organic impurity N.D.</td>
<td>Soluble in hydrocarbon solvents (0.1 M)</td>
<td>Stable over 6 months</td>
<td>Clean evaporation</td>
</tr>
<tr>
<td>Ba-AMD</td>
<td>961.79</td>
<td>White solid</td>
<td>> 200 ºC</td>
<td>0.54</td>
<td>Data collection in progress</td>
<td>Stable to 220 ºC by ARC</td>
<td>Organic impurity N.D.</td>
<td>Stable in hydrocarbon solvents (0.1 M)</td>
<td>Stable over 4 months</td>
<td>Clean evaporation</td>
</tr>
</tbody>
</table>
Summary

- New sources of Ti, Sr and Ba are needed for TiN, STO and BST applications.

- Ti-FAMD, Sr-AMD and Ba-AMD with greater thermal stability are developed.

- Preliminary ALD results for TiN using liquid Ti (III) source are reported.

- Further growth studies on BST and STO are to be conducted.