Low Temperature Atomic Layer Deposition of Tin Dioxide, SnO$_2$

Jaeyeong Heo, Adam S. Hock and Roy G. Gordon
Harvard University
Cambridge, MA USA
Outline

Earth-abundant, non-toxic transparent conductor: SnO$_2$

ALD process for SnO$_2$
- new tin precursor
- growth per cycle

SnO$_2$ film properties
- composition
- structure
- optical properties
- electrical properties
- applications

Harvard University
SnO₂: Transparent Conductor and Heat Mirror

High visible transmission (high bandgap \((E_g \sim 4.1 \text{ eV})\)

High electrical conductivity (high electron concentration and mobility)

High environmental stability

Constituent elements are non-toxic and abundant

Known ALD processes require high temperatures, > 200 °C

or produce impure films (C, N), amorphous, low conductivity
Tin(II) Cyclic Stannylene as ALD Precursor

\[
\text{t-Bu} \quad \text{N} \quad \text{N} \quad \text{t-Bu} \quad \text{Sn}
\]

N2,N3-di-tert-butyl-butane-2,3-diamido-tin(II)

Hydrocarbon ligand \rightarrow high volatility (30 Torr at 60 °C)

Chelate structure \rightarrow thermal stability

Sn-N bonds \rightarrow reactive to hydrogen peroxide, H\textsubscript{2}O\textsubscript{2}

Synthesis and properties described by Adam Hock, Wednesday 14:15
ALD Process for SnO$_2$

Source temperature: 40 °C
Substrate temperature: 120 °C
Growth per cycle: 0.18 nm
Induction period: only a few cycles
ALD Saturation Curves

Increasing doses of cyclic stannylene precursor for tin

Increasing doses of oxygen precursor, hydrogen peroxide

Refractive index ~ 1.94 for saturated growth (3 doses)

Harvard University
Temperature Dependence of Growth

ALD window from 50 to 150 °C
SnO$_x$ Composition

Rutherford Backscattering Spectroscopy (RBS)

No C or N in film

SnO$_2$ for 2-3 doses
X-Ray Photo-Electron Spectroscopy (XPS)

No impurities detected (C, N) inside film
Smooth Morphology of SnO$_2$ Films

400 cycles => 71 nm

AFM
RMS roughness = 2 nm
< 3 % of thickness

Harvard University
Step Coverage

Uniform thickness in holes with aspect ratio 50:1, grown at 50 °C
Polycrystalline Rutile Structure of SnO$_2$ Films

TEM

Si

SnO$_2$

5 nm

X-Ray Diffraction (XRD)

Intensity (arb. unit)

2Theta($^\circ$)

20 25 30 35 40 45 50 55 60

(101) (200) (211) (302)

(110) (101) (200) (301)

electron diffraction

Harvard University
SnO$_2$ has Very Little Visible Absorption

Film 100 nm thick

Band gap 4.13 eV
Electrical Properties

Resistivity minimum for stoichiometric SnO₂ (2 to 4 doses)

N-type semiconductor by Hall measurements

- electron concentration ~ 10^{20} cm⁻³
- electron mobility ~ 6 cm² V⁻¹ s⁻¹

Harvard University
Resistivity vs. Deposition Temperature

minimum resistivity 0.02 Ω-cm when deposited at 120 °C
Proposed Mechanism

Ligand exchange of Sn precursor with hydroxylated surface

Oxidative addition of hydrogen peroxide
Summary

SnO$_2$ is transparent semiconductor made of earth-abundant, inexpensive, non-toxic elements

ALD from a cyclic tin(II) amide and H$_2$O$_2$ \Rightarrow SnO$_2$

Smooth films of pure, stoichiometric, polycrystalline SnO$_2$

High optical transparency and electrical conductivity

Successfully used in several applications:
 organic solar cells (with Alan Heeger, UCSB)
 conducting and protective coatings for plastics
 (with Michelle Schulberg, Physical Sciences Inc.)
 electron multipliers (Philippe deRouffignac, Arradiance, to be presented on Wednesday at 13:30)

another possible application: thin-film transistors on plastic
Acknowledgements

Hall measurements done with Mark Winkler and Eric Mazur

Support was provided by the following:
Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry
Air Force Office of Scientific Research-STTR under contract FA9550-09-C-0075
Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. CNS is a part of the Faculty of Arts and Sciences and the School of Engineering and Applied Sciences at Harvard University.