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We review recent models to estimate phylogenetic trees under the multispecies coalescent. Although the
distinction between gene trees and species trees has come to the fore of phylogenetics, only recently have
methods been developed that explicitly estimate species trees. Of the several factors that can cause gene
tree heterogeneity and discordance with the species tree, deep coalescence due to random genetic drift in
branches of the species tree has been modeled most thoroughly. Bayesian approaches to estimating spe-
cies trees utilizes two likelihood functions, one of which has been widely used in traditional phylogenet-
ics and involves the model of nucleotide substitution, and the second of which is less familiar to
phylogeneticists and involves the probability distribution of gene trees given a species tree. Other recent
parametric and nonparametric methods for estimating species trees involve parsimony criteria, summary
statistics, supertree and consensus methods. Species tree approaches are an appropriate goal for system-
atics, appear to work well in some cases where concatenation can be misleading, and suggest that sam-
pling many independent loci will be paramount. Such methods can also be challenging to implement
because of the complexity of the models and computational time. In addition, further elaboration of
the simplest of coalescent models will be required to incorporate commonly known issues such as devi-
ation from the molecular clock, gene flow and other genetic forces.

� 2009 Published by Elsevier Inc.
1. Introduction

Phylogeny is used to represent the evolutionary history of spe-
cies observed through time, and is thus one of the most important
entities in evolutionary biology (Hillis et al., 1993; Swofford et al.,
1996; Avise, 2000; Ma et al., 2000). It assumes that all species arise
from a common ancestor and that genetic material is transmitted
from ancestors to descendants along the branches of the phyloge-
netic tree. Phylogenetic information is encoded in the genetic
material of contemporary species in a manner that allows the
information from data such as DNA sequences to be used to trace
the history back to the most recent common ancestor of the spe-
cies. While the phylogenetic tree relating the sequences at a single
locus, known as a gene tree, has been rigorously studied for dec-
ades, research on the phylogeny of species—the entity that con-
tains the genetic variation and is arguably the true focus of
phylogenetics—is, ironically, still in its infancy (Liu et al., 2008; Ed-
wards, 2009). The observation of a tremendous amount of variation
in gene trees (both in topologies and branch lengths) estimated
from multilocus sequence data has stimulated research on the esti-
mation of species-level phylogenies in contexts in which variation
at the level of individual genes is taken into account (Pamilo and
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Nei, 1988; Powell, 1991; Doyle, 1992; Hudson, 1992; Brower
et al., 1996; Page and Charleston, 1997; Cao et al., 1998; Pollard
et al., 2006). The emphasis of phylogeny is the evolutionary history
at the level of species, which may be distinct from the genealogical
pathway of individuals, or gene trees (Pamilo and Nei, 1988; Pow-
ell, 1991; Nichols, 2001; Rannala and Yang, 2008). The fact that a
gene tree is the evolutionary history of alleles randomly chosen
from species provides, from a biological perspective, a reasonable
explanation for the relationship between gene trees and the phy-
logeny of species (Pamilo and Nei, 1988; Maddison, 1997). It indi-
cates that a gene tree is a random tree generated within the
phylogeny of species and phylogenies of species should be studied
in the framework of probabilistic models that incorporate the
probability distribution of gene trees given the phylogeny of spe-
cies. Although a few techniques have been developed to specify
this probability distribution in the context of a variety of biological
phenomena such as horizontal gene transfer (HGT) and gene dupli-
cation/loss (Arvestad et al., 2003; Linz et al., 2007), this review will
focus on approaches that assume that the conflicts between gene
trees and the species tree are exclusively due to deep coalescence
(Maddison, 1997; Maddison and Knowles, 2006). Some promising
methods for inferring phylogenies in the presence of horizontal
gene transfer have been developed, although these methods do
not acknowledge the possibility of gene tree discordance due to
deep coalescence (Linz et al., 2007).
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Fig. 1. Flow chart for demonstrating the statistical model for multilocus sequences
generated from the phylogeny of species. The chart illustrates the independence of
the two major stochastic processes in generating molecular data from species trees:
the generation of gene trees from the species tree and the generation of DNA
sequences from the constituent gene trees.
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The probability distribution of gene trees (G) given the species
tree, (S), or f ðGjSÞ, can be used to infer species phylogenies when
gene trees G are known. However, gene trees are generally un-
known and phylogenies must be estimated from multilocus data.
A probabilistic model for estimating species phylogenies consists
of three components; multilocus data (D), gene trees (G), and the
phylogeny of species (S) (Liu and Pearl, 2007). The data will most
commonly be nucleotide sequence or amino acid data, but any data
that contain phylogenetic information for a gene may be used. The
data for a particular gene are the result of a process of descent with
modification along the branches of the gene tree, while the gene
tree itself is a random tree sampled from a probability distribution
dependent on the phylogeny of species (Fig. 1) (Liu et al., 2008).
Although gene trees are random conditional on the species tree,
this need not mean that gene trees are heterogeneous in topology;
depending on the species tree, random gene trees may be highly
constrained and thus highly uniform in topology and branch
lengths. The sequences are generated from the phylogeny S
through two random processes; the process that generates gene
trees from the phylogeny of species, which has probability distri-
bution f ðGjSÞ, and the process that generates data from gene trees,
which has probability distribution f ðDjGÞ. These two consecutive
processes must be simultaneously considered in the development
of probabilistic models for genetic data obtained from the phylog-
eny of species (Fig. 1).

2. The coalescence model for multilocus sequences

We now explicitly consider nucleotide and amino acid sequence
data, for which the mutation process describes how the nucleo-
tides in the sequences change through time along the branches
of gene trees. For multilocus data, we use Di and Gi to denote the
aligned nucleotides or amino acids of all individuals sampled from
the species under study and the gene tree (topology and branch
lengths) for locus i, respectively. The probability distribution
f ðDijGiÞ of the alignment Di given the gene tree Gi is the likelihood
function traditionally used in the maximum likelihood method for
estimating gene trees (Jukes and Cantor, 1969; Felsenstein, 1981;
Hasegawa et al., 1985; Whelan and Goldman, 2001; Sullivan,
2005). Assuming independence among loci in a multilocus data
set, the likelihood function f ðDjGÞ is the product of functions
f ðDijGiÞ across loci, which is used to measure the fit of gene trees
to the multilocus sequence data.

The function f ðGjSÞ is the probability distribution of gene trees
given the phylogeny S. The most commonly considered biological
phenomena that contribute to the conflicts of gene trees and the
phylogeny of species include deep coalescence, horizontal transfer,
and gene duplication/gene loss (Maddison, 1997; Pollard et al.,
2006). While the probability distribution f ðGjSÞ may be derived
from any of these biological events either individually or in combi-
nation (Eulenstein et al., 1998; Stege, 1999; Huson et al., 2005;
Sanderson and McMahon, 2007; Holland et al., 2008), the coales-
cent is the most studied process in modeling the variation among
gene trees due to its mathematical simplicity and the fact that the
phylogeny of species consists of multiple ancestral and contempo-
rary populations within which the ancestral history of individuals
is commonly modeled by a coalescent process in a population
genetics framework under some general conditions (an example
of such conditions are listed below). Thus we concentrate on a
probabilistic model, called the multispecies coalescent model, de-
rived from the coalescence process (Kingman, 1982; Kingman,
2000; Degnan and Salter, 2005; Degnan et al., 2008; Wakeley,
2008), which assumes that the effect of biological phenomena such
as horizontal transfer and gene duplication/gene loss are negligible
compared to the effect of coalescence in the evolutionary process
of individuals sampled from species. In principle, the multispecies
coalescent model (Rannala and Yang, 2003; Degnan and Salter,
2005; Degnan et al., 2008) can be extended to accommodate hori-
zontal transfer and gene duplication/gene loss in order to analyze
the datasets in which these biological events are commonly in-
volved, but this has not yet been accomplished.

The model developed for multilocus DNA sequences in the con-
text of the coalescent includes two probability distributions: the
probability distribution f ðDjGÞ; which is the likelihood function
used for estimating gene trees, and the probability distribution
f ðGjSÞ, derived from the multispecies coalescent model (Maddison,
1997; Felsenstein, 2004). The coalescence model assumes that (1)
any incongruence between gene trees and the phylogeny of species
is exclusively due to the coalescent. However the model does not
necessarily assume that there is any incongruence; sets of topolog-
ically congruent gene trees, as one would detect in analyses involv-
ing species trees with long branches and large internodes, can be
analyzed as well. The model also assumes that (2) there is free
recombination between genes and no recombination within each
gene, (3) there is random mating in each population (current and
ancestral) in the phylogeny of species, (4) there is no selection,
(5) the mutation process along the lineages in the gene tree follows
an evolutionary model (Jukes-Cantor, HKY, or GTR model), (6) se-
quences at a single locus are conditionally independent of the phy-
logeny of species if the gene tree for that locus is given, and (7)
sequences from different genes are mutually independent if their
gene trees are given and the gene trees are mutually independent
if the species tree is given. An explicit mathematical formulation of
the model described above for multilocus sequences D, gene trees
G, and the phylogeny of species S, then, is as follows:

f ðDjGÞ ¼
YK

i¼1

f ðDijGiÞ

f ðGjSÞ ¼
YK

i¼1

f ðGijSÞ;

f ðDijGi; SÞ ¼ f ðDijGiÞ for i ¼ 1; :::K;

where K is the number of genes. The last equation indicates that se-
quences Di are conditionally independent of the phylogeny S when
the gene tree Gi is given. The function f ðDijGiÞ is the likelihood func-
tion derived from nucleotide substitution models (Jukes and Cantor,
1969; Felsenstein, 1981, 2004; Hasegawa et al., 1985), while f ðGijSÞ
is Rannala and Yang’s gene tree density given a species tree (Rann-
ala and Yang, 2003). Let tij be the time interval between the (j-1)th
and jth coalescence in population i. Note that ti1 is the time interval
between the first coalescence and the species divergence time for
population i. The probability density of a gene tree topology
and the (mi � ni) time intervals tiðniþ1Þ; . . . ; timi

for population i with



Fig. 2. The probability densities of two gene trees given the phylogeny of four
species using the formulation of Rannala and Yang (2003). (a,b) The tree with
volume is the phylogeny of species A, B, C, and D; it is identical in both panels. The
divergence times for the three populations in the species phylogeny are s1 ¼ 3:0,
s2 ¼ 2:0, and s3 ¼ 1:0 and are indicated by gray dotted lines. The ancestral
population sizes (not shown) are h1, h2, and h3 at times s1, s2 and s3, respectively.
The values of s and the h are in arbitrary units but their ratio governs the rate of
coalescence (Eq. (3)). For simplicity, we assume that three ancestral populations
have the same size, i.e., h1 ¼ h2 ¼ h3 ¼ h at all nodes in the species tree, even as the
value of h changes. s3 also changes in the species phylogeny but the other s’s do not.
The coalescence times of the gene trees embedded in the species phylogenies are
1.5, 2.5, and 3.5 in (a) and 2.5, 3.5, and 4.5 in (b), in arbitrary units and are indicated
by black dotted lines. The second gene tree (b) does not match the species
phylogeny. (c) The chart indicates the log probability densities of the two gene trees
(gene tree 1 and gene tree 2 in (a) and (b), respectively) with respect to different
values of ratio s3=h (x axis), given the species tree in (a) and (b).
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effective population size hi reduced from mi to ni sampled alleles
along a branch of length si in a species tree is

exp �niðni � 1Þ
hi

si �
Xmi

j¼niþ1

tij

 ! ! Ymi

j¼niþ1

2
hi

exp � jðj� 1Þ
hi

tij

� �� �
:

ð1Þ

The probability distribution of a gene tree G (topology and branch
length) given the phylogeny S is the product of the probability dis-
tribution in (1) across current and ancestral populations (branches)
in the phylogeny S,

f ðGjSÞ ¼
YM
i¼1

exp �niðni � 1Þ
hi

si �
Xmi

j¼niþ1

tij

 ! !(

�
Ymi

j¼niþ1

2
hi

exp � jðj� 1Þ
hi

tij

� �� ��
; ð2Þ

where M is the number of branches in the phylogeny S.
As mentioned before, the likelihood f ðDjGÞ is more familiar to

phylogeneticists than is the second likelihood f ðGjSÞ. To illustrate
the second likelihood function computing the probability density
of a gene tree given a species tree, we derive the probability den-
sities of various gene trees given a single species tree and illustrate
the dependence of this probability density on population sizes of
the species tree. The probability densities of the gene trees embed-
ded in the species phylogeny in Fig. 2 are

2
h1

e�2�ð3:5�s1Þ=h1 � 2
h2

e�2�ð2:5�s2Þ=h2 � 2
h3

e�2�ð1:5�s3Þ=h3 : ð3Þ

It follows from (3) that the probability density of a gene tree de-
creases for large differences between coalescence times in the gene
tree and species divergence times s in the species phylogeny. In
Fig. 2a and b we calculate the probability densities of two gene
trees given a species tree. The probability density of the gene trees
vary as we change the values of the population sizes and diver-
gence times in the species tree. The coalescence times in gene tree
1 of Fig. 2a are closer to the divergence times in the species tree
than those in gene tree 2 of Fig. 2b. Correspondingly, the probabil-
ity densities for gene tree 1 with respect to different values of
parameters in the species tree are larger than those for gene tree
2 (Fig. 2c), illustrating the fact that the gene trees topologically
concordant with the species tree are usually more probable than
the gene trees discordant with the species tree. A notable excep-
tion to this pattern occurs when species trees are in the so-called
anomaly zone, a region of species tree space – usually with very
short internal branches – where discordant gene trees are actually
more common (and therefore more likely) than the topologically
concordant gene tree (Degnan and Rosenberg, 2006).

The likelihood of the phylogeny S is

f ðDjSÞ ¼
Z

G
f ðDjGÞ � f ðGjSÞdG ð4Þ

where the integral is over all possible gene genealogies, including
both topologies and branch lengths. As in the likelihood analysis
for gene tree estimation, one must evaluate a large number of phy-
logenetic trees, in this case a large number of species trees, in order
to find the maximum likelihood estimate of the phylogeny. But in
addition to having to evaluate a large number of species trees, the
large number of gene trees for any given species tree means that
the above likelihood is impractical to calculate directly for all but
the smallest species trees. Even this sobering conclusion does not
quite hold if one has sampled many alleles per species, which nec-
essarily vastly increases the number of gene trees to be evaluated,
as in traditional phylogenetic analysis when one has sampled a
large number of species (Felsenstein, 1988).
3. Estimating phylogenies of species: likelihood, Bayesian and
summary statistic methods

The phylogeny S can be estimated from multilocus sequence
data D using the likelihood function f ðDjSÞ. For example, the max-
imum likelihood estimate (MLE) of the phylogeny S is given by

Ŝ ¼ arg max
S
ff ðDjSÞg: ð5Þ

Bayesian approaches assume a prior distribution for the phylog-
eny S and use the posterior distribution – the combination of like-
lihood and prior distributions – to infer phylogenies. The posterior
distribution of the phylogeny S is

f ðSjDÞ ¼ f ðDjSÞ � f ðSÞ
f ðDÞ : ð6Þ

Unlike the maximum likelihood and Bayesian approaches, which
utilize the full data D and the likelihood function f ðDjSÞ to infer
the phylogeny of species (as well as prior distributions in the case
of Bayesian methods), methods based on summary statistics seek
to estimate the phylogeny S by summarizing the gene trees esti-
mated from multilocus sequences. If Ĝ is a sufficient statistic (Fish-
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er, 1922) of gene trees G, it follows from the Fisher’s factorization
theorem (Casella and Berger, 2002) that the probability density
function f ðDjGÞ is a product of two terms, f ðDjGÞ ¼ kðDÞ � f ðĜjGÞ.
Then Eq. (4) becomes

f ðDjSÞ ¼
Z

G
kðDÞ � f ðĜjGÞ � f ðGjSÞdG ¼ kðDÞ � f ðĜjSÞ; ð7Þ

which by Fisher’s factorization theorem shows that a sufficient sta-
tistic for the phylogeny S is Ĝ. Eq. (7) conveys the important mes-
sage that phylogenies can be estimated by summarizing the gene
trees (Ĝ) estimated from multilocus sequences. Because it is diffi-
cult to derive an analytical expression for a sufficient statistic for
the phylogeny S, this statistic may be replaced by other commonly
used estimates of gene trees, for example, the MLEs of gene trees
(Felsenstein, 1981; Seo et al., 2005). To summarize, methods for
estimating species trees can be broadly classified into two general
categories: phylogenies estimated using the full data and likelihood
function f ðDjSÞ and phylogenies estimated by summarizing gene
trees estimated from multilocus sequences. We discuss each of
these general frameworks in more detail below.

3.1. Estimating phylogenies using the full data and likelihood f ðDjSÞ

In general, there are two standard statistical treatments for esti-
mating parameters using likelihood functions, maximum likeli-
hood methods and Bayesian methods. Maximum likelihood
approaches estimate the phylogeny S by maximizing the likelihood
function f ðDjSÞ. Due to the complexity of the likelihood function,
the maximum likelihood estimates are obtained by numerical
methods which often involve calculating the likelihood score for
an individual phylogeny and updating the phylogeny by modifica-
tions of it that have higher likelihood until no further improvement
in likelihood scores is observed. The calculation of the likelihood
for a phylogeny S is by no means straightforward because the like-
lihood function f ðDjSÞ involves an integral over gene trees (see Eq.
(4)). For this reason, the maximum likelihood method involves
intensive computation for which there is currently no efficient
implementation.

Bayesian methods estimate species trees based on the posterior
distribution f ðSjDÞ. Since the denominator f ðDÞ in the posterior dis-
tribution of S in (6) is infeasible to compute, the posterior distribu-
tion f ðSjDÞ is approximated by numerical methods such as Markov
Chain Monte Carlo (Hastings, 1970) algorithms which also need
intensive computation but in general are deemed faster than their
likelihood counterparts.

The computational burden can be reduced by simplifying the
probability function f ðDjSÞ. For example, the concatenation method
(Huelsenbeck et al., 1996; Adachi et al., 2000) assumes homoge-
neous gene trees across genes and that gene trees are identical to
the phylogeny of species, i.e., G1 ¼ G2 . . . ::: ¼ Gk ¼ S; which sim-
plify the function f ðDjSÞ as

f ðDjSÞ ¼
Z

G
f ðDjGÞ � f ðGjSÞdG ¼ f ðDjG1Þ:

Thus, the concatenation method employs the likelihood of the
gene tree, f ðDjG1Þ, to estimate the phylogeny S assuming that the
gene tree is identical to the phylogeny S. If the assumption of
homogeneous gene trees is seriously violated, the concatenation
method may be inconsistent in estimating the phylogeny of species
(Kubatko and Degnan, 2007). In the case of maximum likelihood,
simulation studies suggest that the concatenation method may
produce spuriously high bootstrap support for incorrect partitions
(Gadagkar et al., 2005; Kubatko and Degnan, 2007). For example,
Nishihara et al. (2007) demonstrated that a concatenated analysis
of a genomic-scale mammalian data set strongly supported a
wrong species phylogeny.
3.2. Estimating phylogenies by summarizing estimated gene trees

Methods in this category estimate species phylogenies by sum-
marizing the gene trees estimated from multilocus sequences
(Baum, 1992), using various forms of summarization. In general,
these methods can be classified into two groups; nonparametric
methods and parametric methods. Nonparametric methods as-
sume no specific distribution for gene trees, while parametric
methods typically assume that the probability distribution of gene
trees complies with coalescent theory.

3.2.1. Nonparametric methods
Nonparametric methods include the consensus (Margush and

McMorris, 1981; Degnan et al., 2008; Ewing et al., 2008), reconcil-
iation (Page and Charleston, 1997; Slowinski et al., 1997; Page,
1998; Avise, 2000; Page, 2000; V’Yugin et al., 2002; Bonizzoni
et al., 2003; Gorbunov and Lyubetsky, 2005; Berglund-Sonnham-
mer et al., 2006), and supertree (Wilkinson et al., 2005; Cotton
and Wilkinson, 2007; Steel and Rodrigo, 2008) methods. Consensus
methods use various techniques to construct a single summary
tree from the estimated gene trees that is then taken to be the esti-
mated phylogeny of the species. Consensus methods are nonpara-
metric in the sense that they do not assume a specific underlying
distribution for the gene trees. The reconciliation method summa-
rizes gene trees by a single tree (or several trees with the same
score) that minimizes the number of coalescence, horizontal, and
gene duplication/gene loss events required to reconcile gene trees
and the query tree (Berglund-Sonnhammer et al., 2006). The super-
tree method is a family of approaches that merge (or summarize)
multiple gene trees into a single tree called the ‘‘supertree” (Bin-
inda-Emonds and Bryant, 1998; Bininda-Emonds and Sanderson,
2001; Day et al., 2008).

3.2.2. Parametric methods
Various parametric methods have been developed in the con-

text of the coalescent. Carstens and Knowles (2007) suggest a coa-
lescent approach to estimate phylogenies from the gene trees
estimated from multilocus sequences. The likelihood scores of all
possible phylogenies are calculated with the probability distribu-
tion of the gene tree topology given the species phylogeny (Degnan
and Salter, 2005) and the best fit species tree is chosen by a likeli-
hood ratio test with a correction for multiple comparisons (Anisim-
ova and Gascuel, 2006).

Coalescent theory assumes that gene coalescence times always
predate species divergence times. This observation motivates the
Global LAteSt Split (GLASS) method (Mossel and Roch, 2007) (also
called the Maximum Tree (Liu et al., 2008; Liu et al., 2009a) which
clusters species using minimum coalescences. This GLASS algo-
rithm is based on an extension of Takahata’s (1989) principle of
minimum coalescence times to the collapsed gene tree concept
of Rosenberg (2002). Given a collection of gene trees (Fig. 3a),
GLASS first calculates the minimum gene coalescence times for
all pairs of species across genes and then uses the minimum gene
coalescence times to build an ultrametric tree (Fig. 3b). GLASS can
be extended to use molecular distances instead of coalescence
times to construct species phylogenies under the assumption that
the rate of mutation is the same for all genes and all individuals in
the same branch of the species phylogeny (Mossel and Roch, 2007).
The principle of clustering species by minimum coalescence times
is also implemented in the software Species Tree Estimation using
Maximum Likelihood, or STEM (Kubatko et al., 2009). This method
appears to perform well under a molecular clock and when rates
among loci are equal.

Under the coalescence model, Liu et al. (2009b) proposed esti-
mating species trees using average ranks of gene coalescence times
(STAR). For the STAR method, the root has the highest rank and the
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Fig. 3. The GLASS/Maximum tree, STAR, and STEAC methods of species tree inference. (a) A collection of gene trees: (((A:0.5, B:0.5):0.2, C:0.7):0.3, D:1.0); ((A:0.6, B:0.6):0.9,
(C:0.3, D:0.3):1.2); (((A:0.2, B:0.2):0.4, C:0.6):0.2, D:0.8) branch lengths are in coalescent units. The numbers at the internodes in the gene trees are the ranks of the nodes.
These gene trees assume a molecular clock but parametric methods often perform well in the absence of a clock (Liu et al., 2009b). (b) The matrix of minimum coalescence
times across gene trees and the GLASS tree constructed from the minimum coalescence times ((A:0.2, B:0.2):0.4, (C:0.3, D:0.3):0.3). (c) The distance matrix of average ranks
across gene trees and the STAR tree constructed from the distance matrix (((A:2.3, B:2.3):1, C:3.3):0.5, D:3.8). (d) The distance matrix of average coalescence times across gene
trees and the STEAC tree constructed from the distance matrix ((A:0.43, B:0.43):0.58, (C:0.7, D:0.7):0.31).
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rank decreases by one as it goes from the root to the leaves of the
tree (Fig. 3a). The STAR method is implemented by building a dis-
tance tree, such as a Neighbor Joining (NJ) tree (Saitou and Nei,
1987) from the distance matrix in which the entries are twice
the average ranks across gene trees (Fig. 3c). Liu et al. also pro-
posed another method for species trees estimation using average
coalescence times (STEAC). The species tree is estimated by a dis-
tance tree built from the distance matrix in which the entries are
twice the average coalescence times (Fig. 3d) across gene trees.
Whereas the STAR approach yields only species tree topologies,
the STEAC methods yields consistent but upwardly biased branch
lengths. In preliminary comparisons, STAR appears more robust
than STEAC, while both methods are much faster than the Bayesian
approach.

In an approach similar to consensus methods, Bayesian concor-
dance factors (Ané et al., 2007; Baum, 2007) have been used to ob-
tain information about the true underlying species relationships on
a genome-wide scale. This method provides a measure of support
for each potential species tree clade using a two-stage MCMC pro-
cedure in which posterior distributions of single-gene phylogenies
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estimated in the first step are then used to form an estimate of the
posterior distribution of the gene-to-tree maps in the second step.
These gene-to-tree maps can then be summarized to provide infor-
mation on the level of concordance for each clade across the mul-
tilocus gene trees while allowing for dependence between loci due
to their shared species-level history. A notable feature of the meth-
od is that it does not require explicit specification of the underlying
evolutionary process which generated the gene tree incongruence.

3.3. Comparison of methods for estimating species trees

3.3.1. Comparison between likelihood and summary statistic methods
Likelihood methods, including the maximum likelihood and

Bayesian methods outlined in Section 3.1, make use of the full data
to infer phylogenies. By contrast, the methods based on summary
statistics estimate the phylogeny using only the summary statistic
of the estimated gene trees. If the summary statistic is not suffi-
cient, such methods use only partial information of the data to in-
fer phylogenies and thus require more sequences (or genes) than
the likelihood methods to achieve a certain level of confidence
on the estimate of the species tree. However, it may not be possible
to apply likelihood methods to large datasets such as seen more
commonly in phylogenomic projects; such data sets often contain
hundreds of genes and species trees are therefore challenging to
estimate due to the intensive computation involved. By contrast,
summary statistic methods can quickly infer phylogenies even
for large-scale phylogenomic data (Liu et al., 2009b). Since phylog-
enomic data contains a huge amount of information regarding the
phylogeny of species, the statistical efficiency of the methods for
estimating phylogeny may not be the main concern; given the
increasing size of phylogenomic data sets, computational ease
may quickly become paramount.

3.3.2. Comparison among nonparametric methods
The consensus, reconciliation, and supertree methods estimate

phylogenies using only the information contained in the topologies
of the individual gene trees. Branch lengths of the gene trees esti-
mated from the multilocus sequences are ignored by these non-
parametric methods, and some methods ignore error in the gene
trees. Degnan et al. (2008) studied the performance of several con-
sensus methods in this setting, including 50% majority-rule con-
sensus trees, R* consensus trees, and greedy consensus trees.
Bryant (2003) describes each of these consensus methods in detail,
so here we give only a brief definition of each. Majority-rule con-
sensus trees are formed by displaying all clades occurring with fre-
quency 50% or more among the single gene tree estimates. R*

consensus trees are constructed by considering the three possible
rooted phylogenetic relationships among each set of three taxa.
Whenever a particular one of these three possible phylogenies of
three taxa occurs in higher frequency in the gene trees than either
of the other two, it is included in the R* consensus tree. The greedy
consensus tree is constructed by sequentially adding the most
highly supported clades to the tree until a completely bifurcating
tree results, with ties broken arbitrarily. Degnan et al. (2008) con-
sidered both asymptotic (in the number of genes) and finite-sam-
ple properties of each of these methods when the sole source of
incongruence in the single-gene phylogenies is incomplete lineage
sorting. They found that the majority-rule method was never
inconsistent as an estimator of the species tree, but that it was
unresolved sometimes, particularly in cases of anomalous or
near-anomalous gene trees (Degnan and Rosenberg, 2006). R* con-
sensus trees were shown to be statistically consistent as the num-
ber of genes increases, but the convergence rate was found to be
exceptionally slow, limiting their applicability for real data sets.
Greedy consensus trees were fastest to converge, but often resulted
in incorrect relationships among species. These results indicate
that no single approach can outperform all other approaches in
terms of both accuracy and speed. The situations that are difficult
for consensus methods (for instance, estimating species trees in
the anomaly zone) would also be difficult for other approaches
such as parametric methods. However, there has not been a sys-
tematic comparison between nonparametric approaches and para-
metric approaches.

Although the issue of consistency has not been addressed for
reconciliation methods, Steel and Rodrigo (2008) address consis-
tency for supertree methods. Their model (exponential error mod-
el) is based on an error function such that the species tree is based
on a weighted function of gene trees that have been assessed as to
their deviation from an hypothesized underlying species tree. They
have shown that the maximum likelihood approach for combining
gene trees into a species tree is statistically consistent even in the
anomaly zone, while commonly used supertree methods such as
matrix representation with parsimony can be statistically inconsis-
tent under the exponential error model.

3.3.3. Comparison among parametric methods
GLASS is statistically consistent under the assumptions in Sec-

tion 2 (Liu et al., 2009a). As the number of genes increases, the
probability that the GLASS tree is congruent with the true phylog-
eny converges to 1.0 at an exponential rate. Since the phylogeny is
determined by the minimum coalescent times in the GLASS meth-
od, the systematic bias of the minimum coalescence times can re-
sult in the wrong estimate of the phylogeny, for example, if the
assumptions in Section 2 are not satisfied (such as when sequences
are affected by horizontal transfer or hybridization). Such pro-
cesses will change the order of the minimum coalescence times
and GLASS will produce an incorrect estimate of the phylogeny.
Thus, the GLASS method is not robust to biological events such
as horizontal transfer and hybridization that may have occurred
during the evolutionary process generating the sequences in the
data.

Under the coalescence model, the STAR and STEAC methods are
statistically consistent (Liu et al., 2009b). In addition, both methods
are fairly robust to a limited amount of horizontal transfer as well
as deviations from a molecular clock because some small values of
coalescence times due to horizontal transfer or rate variation in
particular genes do not have major effects on the average ranks
and average coalescence times when the number of genes is mod-
erate or large.
4. Future directions

4.1. Extending the coalescence model

The methods for estimating phylogenies described in this re-
view are based on the coalescence model that assumes no horizon-
tal transfer and no gene flow among species. This model is
probably appropriate for many clades where HGT is not common,
such as higher eukaryotes, or when taxa are sampled such that
gene flow is not a confounding variable (Liu et al., 2008). To make
it applicable to a broader class of data that may have undergone
horizontal transfer or gene flow, the coalescence model must be
extended to accommodate these biological factors (Eckert and Car-
stens, 2008). There have been a variety of methods to detect the
occurrence of HGT. The phylogeny-based approaches identify
HGT by finding a phylogenetic network in which a minimum num-
ber of HGT events are required to reconcile gene trees and the spe-
cies tree (Hallett and Lagergren, 2001; Nakhleh et al., 2005b; Beiko
and Hamilton, 2006). Alternatively, the parsimony-based HGT
detection approaches attempt to find a phylogenetic network that
can minimize the parsimony length of the sequences evolved on
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the network (Nakhleh et al., 2005a; Jin et al., 2006, 2007). Recently,
Than et al. (2008) developed a new approach that can integrate
parsimony-based approaches and phylogeny-based approaches to
achieve highly efficient performance in terms of both accuracy
and speed. In addition, several authors have recently attempted
to consider both coalescence and hybridization as causes for ob-
served discord in the histories of individual genes using various ap-
proaches (Buckley et al., 2006; Maureira-Butler et al., 2008; Meng
and Kubatko, 2009).

The coalescent model described above can be extended in a
variety of ways by adding more parameters and integrating more
biological phenomena. For example, one area in major need of fur-
ther research is estimating species trees in the absence of a molec-
ular clock, something that was accomplished long ago for gene
trees. Currently several species tree methods assume that the root
of the species tree is known (for example, BEST (Liu, 2008) and
STAR) and it would be useful to relax this assumption, as well as
to devise ways of allowing the species tree to be non-ultrametric.
Some of our own research is currently directed toward this end.
Such extensions necessarily involve adding more parameters to
the basic model. However, simply adding more parameters does
not mean that the model is better. If the model contains too many
parameters, it will eventually become inestimable because the
data do not have sufficient information for estimating these
parameters. Even the current Bayesian model (Liu et al., 2008)
has quite a few parameters for moderate data sets. For example,
in a species tree of 5 species for which 5 genes have been sampled,
there are approximately 63 parameters, whereas for a typical
Bayesian concatenated analysis of the same data, there are only
13 parameters under the Jukes–Cantor substitution model. Be-
cause of the multiple levels of analysis of both gene and species
trees, species tree estimation necessarily involves more parame-
ters, yet the most computationally advantageous models may be
those that minimize the number of parameters to be estimated.

4.2. Checking model assumptions and goodness-of-fit for the
coalescence model

The statistical properties of the methods described in this re-
view are based on the assumption that the coalescence model is
an accurate representation of the underlying population processes.
For real problems, the actual process never exactly follows the
expectation of any specific model. Some of the assumptions of
the coalescence model may not fit the data. It is important to as-
sess how well the model fits the data, realizing that a perfect fit
is not expected. However, we do expect a good model to explain
the data adequately. The fit of the multispecies coalescent model
can be measured by the similarity between the gene trees esti-
mated from data and those expected from the multispecies coales-
cent model. Further research is needed to find a sensitive measure
to assess the similarity between two trees so that the deviation of
the estimated gene trees from the expected ones can be used to de-
tect significant departures from the multispecies coalescent model.

4.3. Guidance on data collection

The problem of ‘‘more loci, more alleles or more base pairs per
locus” has been addressed by Felsenstein (2006) in the context of
the estimation of population size h. The same question may be
asked by the researchers who are interested in the estimation of
species trees. Preliminary work in this area was undertaken by
Maddison and Knowles (2006), who examined the accuracy of
the minimize deep coalescences and shallowest divergences meth-
ods at varying sampling efforts by measuring the proportion of cor-
rectly inferred clades in the species tree in a collection of simulated
data sets. They found that the optimal allocation of sampling effort
depended on properties of the true underlying species tree, with a
direct effect due to the total depth of the species tree. At larger
depths (on the order of 10Ne), allocation of samples to more loci,
rather than more individuals, was found to be most beneficial for
a fixed total sampling effort, while at shallower depths (on the or-
der of 1Ne) allocation to the sampling of more individuals per spe-
cies resulted in the greatest gains in accuracy. Whether these
conclusions generalize to parametric or likelihood methods of spe-
cies tree inference has yet to be examined, though we note that
large scale simulations are often more difficult for these methods
as they are generally more time-intensive. Care is also needed in
selecting the measures of accuracy used to evaluate the estimated
species tree. For example, some measures will capture differences
in topology only, while others, such as the branch score distance
(Kuhner and Felsenstein, 1994) also take branch lengths into ac-
count. Another useful approach to the problem would be to define
a function to measure how much information is in the data and to
identify the relationship between the number of loci, number of se-
quences per species (alleles), the length of loci in base pairs and the
amount of information in the data. Since the variance of the esti-
mate of the species tree will decrease as the information in the
data increases, the variance of the estimator of the species tree
can be used as such function to measure the amount of information
contained in the data.

4.4. Combining different types of data

Molecular sequence data have been predominantly used in esti-
mating phylogenies. Nevertheless, morphological, behavioral, and
physiological traits also exhibit strong phylogenetic signal (Blom-
berg et al., 2003) since the evolutionary process of these traits
are related to the phylogeny of species. Additionally, such traits
may also experience the same kinds of genealogical discordance
as molecular traits, due to the same kinds of processes. It is desir-
able to combine the information from different types of data to
estimate phylogenies. The evolutionary process of species includes
not only the changes of genetic material, but also the changes of
morphological, behavioral, and physiological traits of species.
Studies on combining different types of data can shed the light
on the relationship of changes of genetic material and changes of
morphological, behavioral, and physiological traits, and how these
changes trigger speciation.
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