Adaptive Hybrid Architectures

Dynamic structures that respond reversibly to changes in their environment are central to self-regulating thermal and lighting systems, targeted drug delivery, sensors, and self-propelled locomotion.

Since an adaptive change requires energy input, an ideal strategy would be to design materials that harvest energy directly from the changing condition itself and use it to drive an appropriate response. 

Li S, Librandi G, Yao Y, Richard A, Yamamura AS, Aizenberg J, Bertoldi K. Controlling Liquid Crystal Orientations for Programmable Anisotropic Transformations in Cellular Microstructures. Advanced Materials. 2021 :2105024.Abstract

Geometric reconfigurations in cellular structures have recently been exploited to realize adaptive materials with applications in mechanics, optics, and electronics. However, the achievable symmetry breakings and corresponding types of deformation and related functionalities have remained rather limited, mostly due to the fact that the macroscopic geometry of the structures is generally co-aligned with the molecular anisotropy of the constituent material. To address this limitation, cellular microstructures are fabricated out of liquid crystalline elastomers (LCEs) with an arbitrary, user-defined liquid crystal (LC) mesogen orientation encrypted by a weak magnetic field. This platform enables anisotropy to be programmed independently at the molecular and structural levels and the realization of unprecedented director-determined symmetry breakings in cellular materials, which are demonstrated by both finite element analyses and experiments. It is illustrated that the resulting mechanical reconfigurations can be harnessed to program microcellular materials with switchable and direction-dependent frictional properties and further exploit ”area-specific” deformation patterns to locally modulate transmitted light and precisely guide object movement. As such, the work provides a clear route to decouple anisotropy at the materials level from the directionality of the macroscopic cellular structure, which may lead to a new generation of smart and adaptive materials and devices.

Aizenberg M, Okeyoshi K, Aizenberg J. Inverting the Swelling Trends in Modular Self-Oscillating Gels Crosslinked by Redox-Active Metal Bipyridine Complexes. Adv. Func. Mater. 2017 :1704205. Publisher's VersionAbstract

The developing field of active, stimuli-responsive materials is in need for new dynamic architectures that may offer unprecedented chemomechanical switching mechanisms. Toward this goal, syntheses of polymerizable bipyridine ligands, bis(4-vinylbenzyl)[2,2′-bipyridine]-4,4′-dicarboxylate and N4,N4′-bis(4-vinylphenyl)-2,2′-bipyridine-4,4′-dicarboxamide, and a number of redox-active Ruthenium(II) and Iron(II) complexes with them are reported. Detailed characterizations by NMR, Fourier transform infrared spectroscopy, high-resolution mass-spectrometry, X-ray, and cyclic voltammetry show that the topology of these molecules allows them to serve as both comonomers and crosslinkers in polymerization reactions. Electronic properties of the ligands are tunable by choosing carboxylate- or carboxamido-linkages between the core and the vinylaryl moieties, leading to a library of Ru and Fe complexes with the M(III)/M(II) standard redox potentials suitable for catalyzing self-oscillating Belousov–Zhabotinskii (BZ) reaction. New poly(N-isopropylacrylamide)-based redox-responsive functional gels containing hydrophilic comonomers, which have been prepared using representative Ru bpy complexes as both a crosslinker and redox-active catalyst, exhibit a unique feature: their swelling/contraction mode switches its dependence on the oxidation state of the Ru center, upon changing the ratio of comonomers in the hybrid gel network. The BZ self-oscillations of such crosslinked hydrogels have been observed and quantified for both supported film and free-standing gel samples, demonstrating their potential as chemomechanically active modules for new functional materials.

Kumar K, Liu J, Christianson C, Ali M, Tolley MT, Aizenberg J, Ingber DE, Weaver JC, Bertoldi K. A Biologically Inspired, Functionally Graded End Effector for Soft Robotics Applications. Soft Robotics. 2017;4 (4) :317-323. Publisher's VersionAbstract

Soft robotic actuators offer many advantages over their rigid counterparts, but they often are unable to apply highly localized point loads. In contrast, many invertebrates have not only evolved extremely strong ‘‘hybrid appendages’’ that are composed of rigid ends that can grasp, puncture, and anchor into solid substrates, but they also are compliant and resilient, owing to the functionally graded architecture that integrates rigid termini with their flexible and highly extensible soft musculatures. Inspired by the design principles of these natural hybrid appendages, we demonstrate a synthetic hybrid end effector for soft-bodied robots that exhibits excellent piercing abilities. Through the incorporation of functionally graded interfaces, this design strategy minimizes stress concentrations at the junctions adjoining the fully rigid and soft components and optimizes the bending stiffness to effectively penetrate objects without interfacial failure under shear and compressive loading re- gimes. In this composite architecture, the radially aligned tooth-like elements apply balanced loads to maximize puncturing ability, resulting in the coordinated fracture of an object of interest.

Alvarez MM, Aizenberg J, Analoui M, Andrews AM, Bisker G, Boyden ES, Kamm RD, Karp JM, Mooney DJ, Oklu R, et al. Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. ACS Nano. 2017;11 (6) :5195-5214. Publisher's VersionAbstract

We discuss the state of the art and innovative micro- and nanoscale technologies that are finding niches and opening up new opportunities in medicine, particularly in diagnostic and therapeutic applications. We take the design of point-of-care applications and the capture of circulating tumor cells as illustrative examples of the integration of micro- and nanotechnologies into solutions of diagnostic challenges. We describe several novel nanotechnologies that enable imaging cellular structures and molecular events. In therapeutics, we describe the utilization of micro- and nanotechnologies in applications including drug delivery, tissue engineering, and pharmaceutical development/testing. In addition, we discuss relevant challenges that micro- and nanotechnologies face in achieving cost-effective and widespread clinical implementation as well as forecasted applications of micro- and nanotechnologies in medicine.

Sutton A, Shirman T, Timonen JVI, England GT, Kim P, Kolle M, Ferrante T, Zarzar LD, Strong E, Aizenberg J. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation. Nat. Commun. 2017;8 :14700. Full TextAbstract

Mechanical forces in the cell’s natural environment have a crucial impact on growth,
differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

Hu Y, Kim P, Aizenberg J. Harnessing structural instability and material instability in the hydrogel-actuated integrated responsive structures (HAIRS). Extreme Mechanics Letters. 2017;13 :84-90.Abstract

We describe the behavior of a temperature-responsive hydrogel actuated integrated responsive structure (HAIRS). The structure is constructed by embedding a rigid high-aspect-ratio post in a layer of poly(Nisopropylacrylamide) (PNIPAM) hydrogel which is bonded to a rigid substrate. As the hydrogel contracts, the post abruptly tilts. The HAIRS has demonstrated its broad applications in generating reversible micropattern formation, active optics, tunable wettability, and artificial homeostasis. To quantitatively describe and predict the system behavior, we construct an analytical model combining the structural instability, i.e. buckling of the post, and the material instability, i.e. the volume phase transition of PNIPAM hydrogel. The two instabilities of the system result in a large hysteresis in response to heating and cooling processes. Experimental results validate the predicted phenomenon of the abrupt tilting as temperature and large hysteresis in a heating-and-cooling cycle in the PNIPAM actuated HAIRS. Based on this model, we further discuss the influence of the material properties on the actuation of the structure.

  •  
  • 1 of 5
  • »

Based on this concept, we have developed a class of adaptive materials that, similar to skeletomuscular systems, use a hybrid architecture to interconvert energy between different forms and scales. To specify the materials’ functions, we use surfaces bearing arrays of nanostructures.

Their unique topography can be designed to confer a wide range of optical, wetting, adhesive, anti-bacterial, motion-generating, and other behaviors, similar to their natural counterparts used by lotus leaves to shed water, geckos to stick to surfaces, echinoderms to keep their skin clean, and fish to sense flow. An additional beauty of these nanostructured surfaces is that any of these properties can be switched or fine-tuned just by bending or tilting the structures to alter the patterns.

To harvest and channel energy to drive such reconfigurations, we embed the nanostructures in hydrogels that can be chemically tailored to sense a wide selection of chemical, mechanical, humidity, temperature, light, biochemical, and other environmental conditions.

Changes in these conditions cause the gel to swell or contract, generating not only the mechanical energy of bulk size change but an entire multiscale, 3D cooperative network of mechanical forces within the gel that provide the work for reconfiguring the nanostructures.

Using both experimental and modeling approaches as well as new fabrication methods, we are developing our ability to take full advantage of the immense potential for energy coupling within these hybrids to create a generation of sustainable, self-reporting, self-adapting materials.

Biomolecules Sorted with Catch-and-Release System, Genetic Engineering & Biotechnology News, March 24, 2015. 

Catching and releasing tiny molecules, Harvard press release, March 23, 2015. 

Lifelike cooling for sunbaked windows, Wyss Institute press release, July 30, 2013. 

Hydrogels: The catalytic curtsey, Nature Materials, July 24, 2012. 

Materials with SMARTS, Chemical & Engineering News, July 16, 2012. 

Nanomaterial duplicates self-regulation of living organisms, IEEE Spectrum, July 13, 2012. 

New SMART materials regulate, respond to their environment, Txchnologist, July 12, 2012. 

Homeostatic hydrogels to help heat the home, Chemistry World, July 12, 2012. 

Smart buildings, Nature's weekly podcast (at 06:49), July 12, 2012. 

Smart materials get SMARTer, Harvard press release, July 11, 2012.